LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 1 von 30

Explosions and excitement – properties of alkanes

Bezug zu Kompetenzerwartungen	 vergleichen die physikalischen Eigenschaften molekularer Stoffe und erklären die Gemeinsamkeiten bzw. Unterschiede durch die auftretenden zwischenmolekularen Wechselwirkungen, um hypothesengeleitet Eigenschaftsunterschiede aus den Molekül-strukturen vorauszusagen, z. B. für die Auswahl geeigneter Lösemittel. 		
Zeitlicher Rahmen	3 Unterrichtsstunden		
Ressourcen	 Bunsenbrenner (x2) Tiegelzange (x2) ggf. feuerfeste Unterlage Abdampfschale (x2) Becherglas (x2) Reagenzgläser mit Stopfen Pipette (x2) Papierfilter Paraffinöl, n-Heptan, Salatöl, Wasser 		
Durchiumung	 Unterrichtsstunde: Die Schülerinnen und Schüler führen Experimente zu Brennbarkeit, Viskosität und Siedetemperatur der Alkane durch. Unterrichtsstunde: Die Lernenden erarbeiten, aufbauend auf den Experimenten der Vorstunde, Zusammenhänge zwischen Eigenschaften der Alkane (Stoffebene) und dem Aufbau der Moleküle auf Teilchenebene. Unterrichtsstunde: Die Schülerinnen und Schüler wenden das erlernte Struktur-Eigenschafts-Konzept auf die Eigenschaft Löslichkeit an und erklären den Zusammenhang zwischen Löslichkeit und entsprechenden zwischenmolekularen Wechselwirkungen. 		
Literatur zum Thema	Berthold, Tanja et al.: Chemie? – aber sicher! Experimente kennen und können, Dillingen ¹ 2014.		
Materialien	AB 1 Physical and chemical properties of alkanes AB 2 Learning aid for combustion of alkanes AB 3 Boiling temperature of selected alkanes AB 4 Properties of alkanes AB 5 Solubility of alkanes FO 1 Alkanes		

Bayern bilingual – Gymnasium Fach Chemie

NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 2 von 30

LH 1 Fachvokabular mit Hinweisen zur Aussprache
LH 2 Lösung zu AB 1 physical and chemical properties of alkanes
LH 3 Lösung zu AB 4 properties of alkanes
LH 4 Lösung zu AB 5 solubility of alkanes
LH 5 Verbrennung von Propanschaum
LH 6 Gefährdungsbeurteilung der durchgeführten Versuche
Michael Gellings, Gymnasium Immenstadt

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 3 von 30

Stundenverlauf: Explosions and excitement – properties of alkanes

	Struktur	Erläuterung
	Einstieg (FO 1, LH 2)	Die Schülerinnen und Schüler bekommen als stummen Impuls Abbildungen von verschiedenen Alkanen präsentiert (FO 1). Auf diese Weise werden die Gemeinsamkeiten dieser Stoffe thematisiert: Es sind alles Alkane, die jedoch in unterschiedlichen Aggregatzuständen vorliegen. Warum ist das so? Die Schülerinnen und Schüler klären diese Frage im Verlauf dieser Unterrichtseinheit. Zunächst wird die Brennbarkeit, zu der ein Experiment (Lehrerversuch LH 2) durchgeführt wird, thematisiert.
Stunde 1	Erarbeitung (AB 1)	Nun erforschen die Lernenden weitere Eigenschaften der Alkane in einem Stationenlauf (siehe AB 1). Aufgrund der zahlreichen Experimente bietet es sich an, die vertiefende Erarbeitung und Sicherung in die zweite Stunde zu legen. Von jedem durchgeführten Experiment kann ein Foto gemacht werden. Diese Fotos können dann als Erinnerungsstütze in der Folgestunde herangezogen werden.
	Fakultativ	Wenn die Schülerinnen und Schüler sehr zügig experimentieren, kann bereits mit der Erarbeitung der Erklärungen (AB 2, siehe 2. Stunde) begonnen werden.
	Einstieg / Erarbeitung 1 (AB 1)	Die Fotos der Ergebnisse der Experimente werden gezeigt und die Gruppen schildern ihre jeweiligen Beobachtungen. Diese werden auf dem Arbeitsblatt (AB 1) festgehalten.
Stunde 2	Erarbeitung 2 / Sicherung (AB 1 bis 3)	 Nun erarbeiten die Experimentiergruppen die Erklärungen für die Experimente. Folgende Hilfen werden zur Verfügung gestellt: Versuch 1: Lernhilfe auf AB 2. Die Schülerinnen und Schüler können diese gestuft benutzen, je nachdem, wie viel Hilfe benötigt wird. Versuch 2 und 3: AB 3 in einzelne Kärtchen zerschnitten. Hier können die Schülerinnen und Schüler feststellen, dass ein Zusammenhang zwischen Siedetemperatur und Masse/Oberfläche der Moleküle besteht.
		Nachdem die Lernenden selbstständig Erklärungen gefunden haben, werden diese gemeinsam besprochen und die Ergebnisse auf AB 1 festgehalten (vgl. LH 2).
	Einstieg / Erarbeitung 1 (AB 4)	Die Zusammenhänge zwischen der Struktur der Moleküle und den Eigenschaften der Stoffe werden mit AB 4 nochmals aufgegriffen. Hierzu setzen die Schülerinnen und Schüler die passenden Begriffe in die Kästchen ein und streichen die verwendeten Begriffe durch. Jeder Begriff kann nur einmal verwendet werden.
Stunde 3	Erarbeitung 2 (AB 5)	Die Schülerinnen und Schüler führen Versuche zur Löslichkeit durch (AB 5). Sie ziehen Gelerntes der Vorstunde heran und erklären selbstständig die Eigenschaften der Stoffe mit der Struktur der Moleküle auf Teilchenebene.
	Sicherung (AB 5)	Die Ergebnisse werden gemeinsam auf AB 5 gesichert. Nun erklären die Schülerinnen und Schüler sich unter Bezugnahme auf die Teilchenebene gegenseitig, warum die Alkane auf der ersten Folie verschiedene Aggregatzustände haben. Sie berücksichtigen dabei die Teilchenebene.

Thema

Stand: 18. Januar 2021, Seite 4 von 30

LH 1: Fachvokabular mit Hinweisen zur Aussprache

Englisch	Aussprache (BrE)	Deutsch
Bunsen burner	ˈbʌnsn ˈbɜːnə	Bunsenbrenner
combustion	kəm'bʌstʃən	Verbrennung
crucible tongs	ˈkruːsɪbəl tɒŋz	Tiegelzange
evaporation dish	ıˌvæpəˈreıʃən dı∫	Abdampfschale
flammable	ˈflæməbəl	entzündlich
goggles	ˈgɒgəlz	Schutzbrille
hazard	ˈhæzəd	Gefahr
pipette	pı'pet	Pipette
luminous	ˈluːmɪnəs	leuchtend
methane	ˈmiːθeɪn	Methan
reaction equation	rıˈækʃən ıˈkweɪʒən	Reaktionsgleichung
roaring	ˈrɔːrɪŋ	hier: rauschend
test tube	'test tju:b	Reagenzglas
tile	taıl	Fliese
volatility	,vɒləˈtılıti	Flüchtigkeit

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 5 von 30

AB 1 Physical and chemical properties of alkanes

grade	10 NTG / SG	
Students of	an conduct experiments themselves: yes no	
Experimen	: 1:	
material:		
- Bunsen bu	rner - crucible tongs - a tile - two evaporation dishes	- glass beaker
the Bu	the Bunsen burner and hold the evaporation dish in the luminounsen burner to give a roaring blue flame and hold the second dish racouple of seconds on the tile and then clean them for the next	into it for about 5 seconds. Let the dishes
observation	ns luminous flame:	
observation	ns roaring blue flame:	
flame	ne glass beaker upside down over the luminous flame. After that hor about 3 seconds. as luminous flame:	nold another beaker over the roaring blue
observation	ns roaring blue flame:	
Write the roaring blu		in the burner) in the luminous and in the
roaring blu	e flame:	
Explain brie	rfly why the reaction in the luminous flame is different from the re	eaction in the roaring blue flame:

NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 6 von 30

experiment 2:				
material:				
- test tubes (x2)	- paraffin (mixture of l	ong alkanes)	- n-heptane	
There are two closed down a couple of time		th paraffin and o	ne with n-heptane. Turn	the closed test tubes upside
observations:				
conclusions:				
material:				
- pipettes (x2)	- paper filter	- paraffin (m	ixture of long alkanes)	- n-heptane
Put two drops of para	affin and heptane on the pa	per filter at the s	ame time.	
observations:				
conclusions:				

Disposal

All liquids are to be disposed of in the Erlenmeyer flask at the teacher's desk. Keep the flask closed.

Please clean all your equipment and wipe your table with a cloth, if necessary.

Stand: 18. Januar 2021, Seite 7 von 30

AB 2 Learning aid for combustion of alkanes

learning aid to solve experiment 1

Bayern bilingual – Gymnasium Fach LehrplanPLUS Thema

Chemie NTG 9.5 Eigenschaften der Alkane
SG 10.3

Stand: 18. Januar 2021, Seite 8 von 30

1. reactants:

Which substance other than propane is needed for combustion? This substance and propane are the reactant of the reaction.

Fach LehrplanPLUS Thema

Chemie NTG 9.5 Eigenschaften der Alkane
SG 10.3

Stand: 18. Januar 2021, Seite 9 von 30

solution 1:

Other than propane, oxygen is part of the reaction.

2. products:

luminous flame:

The products are gases and a black solid.

roaring blue flame:

The products are gaseous.

Stand: 18. Januar 2021, Seite 10 von 30

solution 2:

In the roaring blue flame carbon dioxide and water vapour are produced. Additionally elemental carbon is produced in the luminous flame.

3. reaction equation (not yet balanced)

roaring blue flame: $CH_4 + O_2 \rightarrow CO_2 + H_2O$

luminous flame: $CH_4 + O_2 \rightarrow CO_2 + H_2O + C$

Balance the equation.

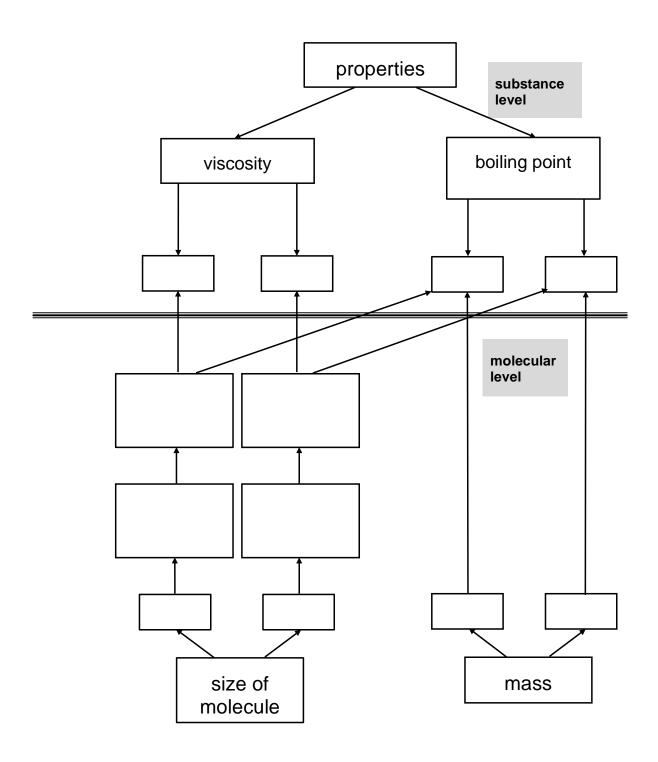
LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

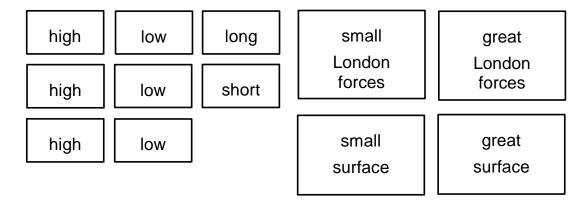

Stand: 18. Januar 2021, Seite 11 von 30

AB 3 Boiling point of selected alkanes

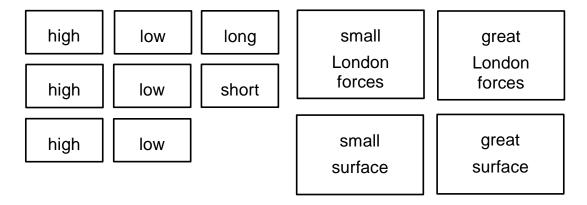
methane	2-methylbutane	2,2-dimethylbutane
CH_4 $m_a = 16,0 \text{ u}$ $T_b = 111 \text{ K}$	$H H_2$ $H_3C-C-C-CH_3$ CH_3 $m_a = 72,0 \text{ u}$ $T_b = 301 \text{ K}$	$CH_3 H_2 H_3C-C-C-CH_3 CH_3$ CH_3 $m_a = 86,0 u$ $T_b = 323 K$
ethane	2,2-dimethylpropane	3-methylpentane
$H_3C - CH_3$ $m_a = 30,0 \text{ u}$ $T_b = 185 \text{ K}$	CH_3 $H_3C-C-CH_3$ CH_3 $m_a = 72,0 \text{ u}$ $T_b = 282,5 \text{ K}$	$H_2 H H_2$ $H_3C-C-C-C-CH_3$ CH_3 $m_a = 86,0 \text{ u}$ $T_b = 336 \text{ K}$
propane	n-hexane	2-methylpropane
H_{2} $H_{3}C-C-CH_{3}$ $m_{a} = 44,0 \text{ u}$ $T_{b} = 231 \text{ K}$	$H_2 H_2 H_2 H_2$ $H_3C-C-C-C-C-CH_3$ $m_a = 86,0 \text{ u}$ $T_b = 341 \text{ K}$	CH_3 $H_3C-C-C-CH_3$ $m_a = 58,0 \text{ u}$ $T_b = 262 \text{ K}$
n-butane	2-methylpentane	
$H_2 H_2$ $H_3C-C-C-CH_3$ $m_a = 58,0 \text{ u}$ $T_b = 272,5 \text{ K}$	$H H_2 H_2$ $H_3C-C-C-C-CH_3$ CH_3 $m_a = 86,0 \text{ u}$ $T_b = 333 \text{ K}$	
n-pentane	2,3-dimethylbutane	
$H_2 H_2 H_2$ $H_3C-C-C-C-CH_3$ $m_a = 72,0 \text{ u}$ $T_b = 309 \text{ K}$	CH_3 $H_3C-C-C-CH_3$ CH_3 $m_a = 86,0 \text{ u}$ $T_b = 331 \text{ K}$	

Stand: 18. Januar 2021, Seite 12 von 30

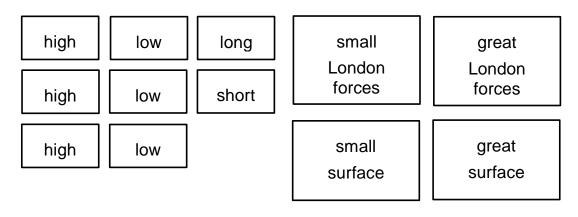
AB 4 properties of alkanes


NTG 9.5 SG 10.3

Eigenschaften der Alkane


Thema

Stand: 18. Januar 2021, Seite 13 von 30


AB 4 properties of alkanes - missing words

AB 4 properties of alkanes – missing words

AB 4 properties of alkanes – missing words

NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 14 von 30

AB 5 Solubility of alkanes					
grade	10 NTG / SG				
Students	an conduct experiments themselves: yes no				
materials:	- test tubes - heptane - salad oil - wate	ſ			
Objective:					
Finding out	about the solubility of alkanes.				
Procedure					
Fill two tes	tubes about two fingers high: one with water (coloured blue) and	l one with oil (coloured red). Mix heptane			
into both li	quids (1 finger high) and gently shake the test tube.				
Observatio					

Conclusions:				

Disposal

All liquids are to be disposed of in the Erlenmeyer flask at the teacher's desk. Keep the flask closed.

Please clean all your equipment and wipe your table with a cloth, if necessary.

LehrplanPLUS

NTG 9.5

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 15 von 30

SG 10.3

FO 1 Alkanes

Picture: theleetgeeks,, licensed under CC BY-NC-ND 2.0 , https://www.flickr.com/photos/theleetgeeks/3105310044/ [30.03.2016]

Picture: clipdealer

Picture: clipdealer

Picture: clipdealer

NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 16 von 30

LH 2 Lösung zu AB 1 physical and chemical properties of alkanes

grade	10 NTG / SG	
Students	can conduct experiments themselves: yes no	

experiment 1: combustibility of alkanes

material:

- Bunsen burner - crucible tongs - a tile - two evaporation dishes - glass beaker

1.1 Ignite the Bunsen burner and hold the evaporation dish in the luminous flame for about 5 sec. Now adjust the Bunsen burner to give a roaring blue flame and hold the second dish into it for about 5 sec. Let the dishes cool for a couple of seconds on the tile and then clean them for the next group.

Observations luminous flame: The dish becomes black. A black solid forms on the dish.

Observations roaring blue flame: nothing can be seen.

1.2 Hold the glass beaker upside down over the luminous flame and another beaker over the roaring flame for about 3 sec.

observations luminous flame: moisture condenses on the inside of the beaker

observations roaring blue flame: moisture condenses on the inside of the beaker

Write the reaction equation for the combustion of propane (C_3H_8 – the gas in the burner) in the luminous and in the roaring blue flame.

luminous flame: $C_3H_8 + 3 O_2 \rightarrow CO_2 + 4 H_2O + 2 C$

roaring blue flame: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

Explain briefly why the reaction in the luminous flame is different from the reaction in the roaring blue flame:

In the luminous flame there is less oxygen and so combustion is incomplete. The elemental carbon is heated and starts glowing in the flame when it comes in contact with oxygen.

In the roaring blue flame there is enough oxygen for the combustion to be complete.

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 17 von 30

Experiment 2: viscosity of alkanes

materials:

- test tubes (x2) - paraffin (mixture of long alkanes) - n-heptane

There are two closed test tubes. One is filled with paraffin and the other one with n-heptane. Turn the closed test tubes upside down a couple of times.

observations: paraffin is thicker than heptane

conclusions: The molecules of paraffin are longer (more mass and surface) than those of heptane. Thus the intermolecular power between the paraffin molecules is higher than the power between the heptane molecules.

experiment 3: boiling point of alkanes/volatility of alkanes

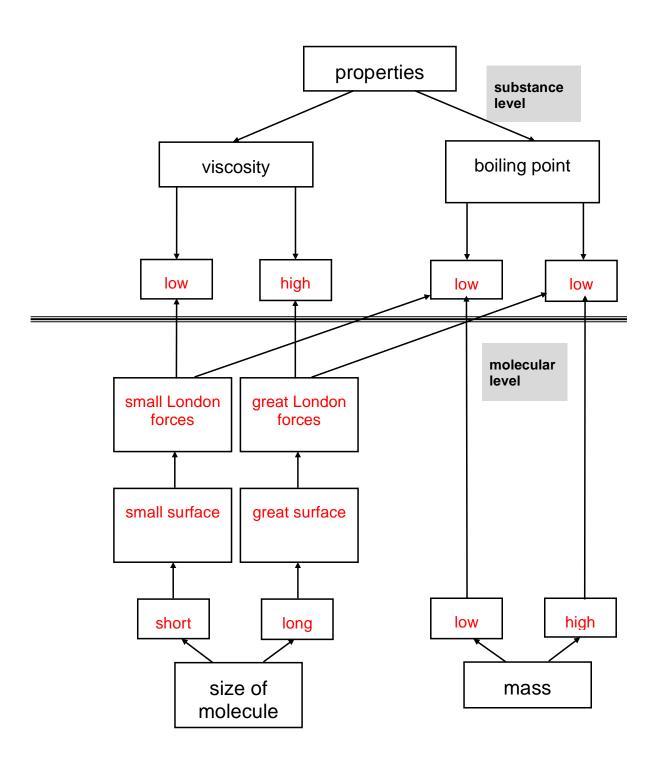
materials:

- pipettes (x2) - paper filter - paraffin (mixture of long alkanes) - n-heptane

Put two drops of paraffin and heptane on the paper filter at the same time.

observations: Heptane evaporates faster than paraffin.

conclusions: Paraffin has a higher boiling point than heptane. The intermolecular power between the paraffin molecules are higher than the ones between the heptane molecules.


Disposal

All liquids are to be disposed of in the Erlenmeyer flask at the teacher's desk. Keep the flask closed.

Please clean all your equipment and wipe your table with a cloth, if necessary.

Stand: 18. Januar 2021, Seite 18 von 30

LH 3 Lösung zu AB 4 properties of alkanes

Stand: 18. Januar 2021, Seite 19 von 30

LH 4 Lösung zu AB 5 Solubility of alkanes

grade		10 NTG / SG				
Students of	Students can conduct experiments themselves: ves no					
materials:	- test tubes -	heptane	- salad oil	- wate	-	

Objective:

Finding out about the solubility of alkanes.

Procedure:

Fill two test tubes about two fingers high: one with water and one with oil. Mix heptane into both liquids (1 finger high) and gently shake the test tube.

Observations: Heptane mixes with oil. You cannot distinguish between the two liquids. However, it does not mix with water. You can see a layer of blue water and a layer of colourless heptane.

Conclusions: Water molecules are polar and oil molecules are non-polar. Heptane only mixes with oil. Looking at the heptane molecules, they seem to be non-polar. Thus polar substances are only soluble in polar solvents and non-polar substances are only soluble in non-polar solvents.

Disposal

All liquids are to be disposed of into the Erlenmeyer flask at the teacher's desk. Keep the flask closed.

Please clean all your equipment and wipe your table with a cloth, if necessary.

Stand: 18. Januar 2021, Seite 20 von 30

LH 5 Verbrennung von Propanschaum

Klasse	10 NTG/SG					
Schülerex	Schülerexperiment:ja					
Geräte un	d Chemikalien:	- Standzylinder - Spülmittel	- Bunsenbrenne - Wasser	r - Gummischlauch		

Durchführung:

- Ein Standzylinder wird mit etwas Wasser gefüllt und dieses mit einigen Tropfen Spülmittel versetzt.
- Nun wird ein Gummischlauch auf einen Bunsenbrenner gestülpt und das Brennergas in die Spülmittellösung eingeleitet.
- Die aufsteigenden Gasblasen können mit der Hand abgeschöpft werden und werden dann auf der offenen Handfläche entzündet.
- Es ist wichtig, die Hand vorher ausreichend mit Wasser zu benetzen. Dies verhindert einerseits das Platzen der Gasblasen, andererseits kühlt es während der Verbrennung. Des Weiteren darf die Hand nicht zurückgezogen werden, da sonst brennendes Gas mit dem Haar in Kontakt kommen könnte.

Beobachtungen:

- Das Gas bildet "Seifenblasen" und diese steigen auf. Lösen sich diese, steigen sie zur Decke auf.
- Die Gasblasen verbrennen eindrucksvoll auf der Handfläche, in einer schlagartigen, heftig aussehenden Verbrennung.

Erklärung:

- Propan hat eine geringere Dichte als Luft. Daher steigen die Blasen nach oben und sie türmen sich über dem Standzylinder auf.
- Propan ist brennbar. Es verbrennt auch bei normaler Raumluft vollständig, sodass keine Rückstände aus Ruß übrig bleiben.

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 21 von 30

LH 6 Gefährdungsbeurteilung der durchgeführten Versuche

Schule: Fachlehrer:	
Versuche: AB 1 physical and chemical properties of alkanes	
1. Versuch auf AB 1: combustibility of alkanes	
Durchführung:	
Eine Abdampfschale wird in die rauschende und in die leuchtende Flamme des Bunsenbrenners gehalten. Anschließend wird ein Becherglas umgedreht jeweils über die beiden Flammen gehalten.	
Beobachtung:	
Die Bechergläser beschlagen innen in beiden Flammen. Die Abdampfschale wird in der leuchtenden Flamme geschwärzt, in der rauschenden Flamme passiert nichts.	
Erklärung:	
Bei der Verbrennung von Propan entstehen gasförmiges Wasser und Kohlenstoffdioxid. In der leuchtenden Flam nicht ausreichend Sauerstoff vorhanden und somit entsteht auch Ruß.	me ist
Ausgangsstoffe:	
Methan:	
Signalwort "Gefahr": GHS 02 , GHS 04 H220: Extrem entzündbares Gas.	
Produkte:	
Kohlenstoffdioxid:	
Kein Gefahrenstoff	
Wasser (g):	
Kein Gefahrenstoff	
Kohlenstoff – Ruß (s):	
Kein Gefahrenstoff	
Substitution möglich? Substitution wurde geprüft und ist nicht weiter möglich, da es sich hier um einen Standardschulversuch handelt, der mit erlaubten Chemikalien aus der neuesten D-GISS-Liste (GUV-SR 2004) durchgeführt wird.	
Gefahren:	
Einatmen / Hautkontakt:	
Brandgefahr:	
Explosionsgefahr:	
Sonstige Gefahren:	

Datum:

Fach Chemie

LehrplanPLUS NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 22 von 30							
Ergebnis:							
Schülerversuch möglich		\boxtimes	nur Lehrerversuch				
			ABZUG				Weitere Maßnahmen
				(开)			
	Schutzbrille	Schutz handschuhe	Abzug	geschlossenes System	Lüftungs- maßnahmen	Brandschutz- maßnahmen	
	\boxtimes						

Unterschrift:

LehrplanPLUS NTG 9.5

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 23 von 30

SG 10.3

2. Versuch auf AB 1: viscosity of alkanes

Durchführung:

Zwei verschlossene Reagenzgläser mit Heptan und Paraffinöl werden wiederholt auf den Kopf gestellt.

Beobachtung:

Paraffinöl fließt langsamer als Heptan.

Erklärung:

Paraffinöl hat eine höhere Viskosität als Heptan, da es aus größeren Molekülen besteht und somit die London-Kräfte größer sind.

Ausgangsstoffe:

Heptan:

Signalwort "Gefahr": GHS 02 , GHS 07 , GHS 08 , GHS 09

H225: Flüssigkeit und Dampf leicht entzündbar.

H304: Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

H315: Verursacht Hautreizungen.

H336: Kann Schläfrigkeit und Benommenheit verursachen.

H410: Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

Paraffinöl, dickflüssig:

Nicht kennzeichnungspflichtig

Paraffinöl, dünnflüssig:

Signalwort "Gefahr": GHS 08

H304: Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

Produkte:

Keine chemische Reaktion. Siehe Ausgangsstoffe

Substitution möglich? Substitution wurde geprüft und ist nicht weiter möglich, da es sich hier um einen Standardschulversuch handelt, der mit erlaubten Chemikalien aus der neuesten D-GISS-Liste (GUV-SR 2004) durchgeführt wird.

Gefahren:

Einatmen / Hautkontakt: Brandgefahr: Explosionsgefahr:

Sonstige Gefahren:

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 24 von 30

Ergebnis: Schülervers	uch möglich			nur Lel	nrerversuch		
	Schutzbrille	Schutz handschuhe	Abzug	geschlossenes System	Lüftungs- maßnahmen	Brandschutz- maßnahmen	Weitere Maßnahmen
						\boxtimes	
Datum:			Unt	erschrift:			

LehrplanPLUS NTG 9.5

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 25 von 30

SG 10.3

3. Versuch auf AB 1: boiling temperature of alkanes / volatility of alkanes

Durc	htü	hrung:
------	-----	--------

Heptan und Paraffinöl werden auf einen Papierfilter getropft.

Beobachtung:

Der Tropfen Heptan verschwindet / verdampft schneller als der Tropfen Paraffinöl.

Erklärung:

Paraffinöl hat eine höhere Siedetemperatur als Heptan, da es aus größeren Molekülen besteht und somit die London-Kräfte größer sind. Somit verdampft Paraffinöl nicht so schnell wie Heptan, bei gleicher Raumtemperatur.

Ausgangsstoffe:

Heptan:

Signalwort "Gefahr": GHS 02 , GHS 07 , GHS 08 , GHS 09

H225: Flüssigkeit und Dampf leicht entzündbar.

H304: Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

H315: Verursacht Hautreizungen.

H336: Kann Schläfrigkeit und Benommenheit verursachen.

H410: Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

Paraffinöl, dickflüssig:

Nicht kennzeichnungspflichtig

Paraffinöl, dünnflüssig:

Signalwort "Gefahr": GHS 02

H304: Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

Produkte:

Keine chemische Reaktion. Siehe Ausgangsstoffe

Substitution möglich? Substitution wurde geprüft und ist nicht weiter möglich, da es sich hier um einen Standardschulversuch handelt, der mit erlaubten Chemikalien aus der neuesten D-GISS-Liste (GUV-SR 2004) durchgeführt wird.

Gefahren:

Einatmen / Hautkontakt: Brandgefahr: Explosionsgefahr:

Sonstige Gefahren:

NTG 9.5 SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 26 von 30

Ergebnis: Schülervers	uch möglich			nur Leh	nrerversuch		
			ABZUG	6			Weitere Maßnahmen
	Schutzbrille	Schutz handschuhe	Abzug	geschlossenes System	Lüftungs- maßnahmen	Brandschutz- maßnahmen	
Datum:			Unt	erschrift:			

LehrplanPLUS

NTG 9.5

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 27 von 30

SG 10.3

Versuch: AB 5 solubility of alkanes

Durchführung:

Salatöl wird vorab von der Lehrkraft mit Sudanrot angefärbt. Wasser mit Methylenblau.

Reagenzgläser werden jeweils mit Salatöl und Wasser einen Finger hoch gefüllt. In beide Reagenzgläser werden einige Tropfen Heptan gegeben.

Beobachtung:

Heptan vermischt sich mit Salatöl. Heptan vermischt sich nicht mit Wasser und bildet eine durchsichtige Phase über Wasser.

Erklärung:

Gleiches löst sich in Gleichem. Somit löst sich Heptan, bestehend aus unpolaren Molekülen, nur mit Salatöl (auch unpolar) und nicht mit Wasser (polar).

Ausgangsstoffe:

Heptan:

Signalwort "Gefahr": GHS 02 , GHS 07 , GHS 08 , GHS 09

H225: Flüssigkeit und Dampf leicht entzündbar.

H304: Kann bei Verschlucken und Eindringen in die Atemwege tödlich sein.

H315: Verursacht Hautreizungen.

H336: Kann Schläfrigkeit und Benommenheit verursachen.

H410: Sehr giftig für Wasserorganismen mit langfristiger Wirkung.

Produkte:

Keine chemische Reaktion. Siehe Ausgangsstoffe

Substitution möglich? Substitution wurde geprüft und ist nicht weiter möglich, da es sich hier um einen Standardschulversuch handelt, der mit erlaubten Chemikalien aus der neuesten D-GISS-Liste (GUV-SR 2004) durchgeführt wird.

Gefahren: Einatmen / Hautkontakt:

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 28 von 30

Ergebnis:

Schülervers	uch möglich	ı	\boxtimes	nur Lel	nrerversuch		
	Schutzbrille	Schutz handschuhe	ABZUG	geschlossenes System	Lüftungs- maßnahmen	Brandschutz- maßnahmen	Weitere Maßnahmen

Datum: Unterschrift:

LehrplanPLUS NTG 9.5

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 29 von 30

SG 10.3

Versuch: LH 5 Verbrennung von Propanschaum

Durchführung:

- Ein Standzylinder wird mit etwas Wasser gefüllt und dieses mit einigen Tropfen Spülmittel versetzt.
- Nun wird ein Gummischlauch auf einen Bunsenbrenner gestülpt und das Brennergas in die Spülmittellösung eingeleitet.
- Die aufsteigenden Gasblasen können mit der Hand abgeschöpft werden und werden dann auf der offenen Handfläche entzündet.
- Es ist wichtig, die Hand vorher ausreichend mit Wasser zu benetzen. Dies verhindert einerseits das Platzen der Gasblasen, andererseits kühlt es während der Verbrennung. Des Weiteren darf die Hand nicht zurückgezogen werden, da sonst brennendes Gas mit dem Haar in Kontakt kommen könnte.

Beobachtungen:

Sonstige Gefahren:

- Das Gas bildet "Seifenblasen" und diese steigen auf. Lösen sich diese, steigen sie zur Decke auf.
- Die Gasblasen verbrennen eindrucksvoll auf der Handfläche, in einer schlagartigen, heftig aussehenden Verbrennung.

Erklärung:

- Propan hat eine geringere Dichte als Luft. Daher steigen die Blasen nach oben und sie türmen sich über dem Standzylinder auf.
- Propan ist brennbar. Es verbrennt auch bei normaler Raumluft vollständig, so dass keine Rückstände aus Ruß

übrig bleiben.	
Ausgangsstoffe:	
Methan:	
Signalwort "Gefahr": GHS 02 H220: Extrem entzündbares Gas.	GHS 04
Produkte:	
Kohlenstoffdioxid:	
Kein Gefahrenstoff	
Wasser (g):	
Kein Gefahrenstoff	
	geprüft und ist nicht weiter möglich, da es sich hier um einen ubten Chemikalien aus der neuesten D-GISS-Liste (GUV-SR 2004)
Gefahren:	
Einatmen / Hautkontakt:	
Brandgefahr:	
Explosionsgefahr:	

LehrplanPLUS

NTG 9.5

SG 10.3

Eigenschaften der Alkane

Thema

Stand: 18. Januar 2021, Seite 30 von 30

Ergebnis:							
Schülerversuch möglich			nur Lehrerversuch				
		m	ABZUG				Weitere Maßnahmen
	Schutzbrille	Schutz handschuhe	Abzug	geschlossenes System	Lüftungs- maßnahmen	Brandschutz- maßnahmen	
	\boxtimes					\boxtimes	
Datum:			Unt	erschrift:			